Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Rep ; 14(1): 11071, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745036

RESUMEN

The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.


Asunto(s)
Variación Genética , Kelp , Filogenia , Kelp/genética , Kelp/clasificación , Filogeografía , Repeticiones de Microsatélite/genética , Hibridación Genética , ADN Mitocondrial/genética , África Austral
2.
Biomedicines ; 12(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255252

RESUMEN

Age-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.

3.
Brain Struct Funct ; 229(1): 231-249, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091051

RESUMEN

APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Humanos , Persona de Mediana Edad , Femenino , Masculino , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Alelos , Encéfalo/metabolismo , Envejecimiento/genética , Cognición , Perfilación de la Expresión Génica , Atrofia/patología
4.
J Phys Chem A ; 128(1): 281-291, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38154124

RESUMEN

In this work, an internally contracted stochastic complete active space second-order perturbation theory, stochastic-CASPT2, is reported. The method relies on stochastically sampled reduced density matrices (RDMs) up to rank four and contractions thereof with the generalized Fock matrix. A new protocol for calculating higher-order RDMs in full configuration interaction quantum Monte Carlo (FCIQMC) has been designed based on (1) restricting sampling of the corresponding excitations to a deterministic subspace, (2) averaging the RDMs from independent dynamics and (3) projecting them onto the closest positive semi-definite matrix. Our protocol avoids previously encountered numerical conditioning problems in the orthogonalization of the perturber overlap matrix stemming from numerical noise. The chromium dimer CASSCF(12,12)/CASPT2 binding curve is computed as a proof of concept.

5.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36992025

RESUMEN

In real-time remote sensing application, frames of data are continuously flowing into the processing system. The capability of detecting objects of interest and tracking them as they move is crucial to many critical surveillance and monitoring missions. Detecting small objects using remote sensors is an ongoing, challenging problem. Since object(s) are located far away from the sensor, the target's Signal-to-Noise-Ratio (SNR) is low. The Limit of Detection (LOD) for remote sensors is bounded by what is observable on each image frame. In this paper, we present a new method, a "Multi-frame Moving Object Detection System (MMODS)", to detect small, low SNR objects that are beyond what a human can observe in a single video frame. This is demonstrated by using simulated data where our technology-detected objects are as small as one pixel with a targeted SNR, close to 1:1. We also demonstrate a similar improvement using live data collected with a remote camera. The MMODS technology fills a major technology gap in remote sensing surveillance applications for small target detection. Our method does not require prior knowledge about the environment, pre-labeled targets, or training data to effectively detect and track slow- and fast-moving targets, regardless of the size or the distance.

6.
Cereb Cortex ; 33(9): 5307-5322, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36320163

RESUMEN

The selective vulnerability of brain networks in individuals at risk for Alzheimer's disease (AD) may help differentiate pathological from normal aging at asymptomatic stages, allowing the implementation of more effective interventions. We used a sample of 72 people across the age span, enriched for the APOE4 genotype to reveal vulnerable networks associated with a composite AD risk factor including age, genotype, and sex. Sparse canonical correlation analysis (CCA) revealed a high weight associated with genotype, and subgraphs involving the cuneus, temporal, cingulate cortices, and cerebellum. Adding cognitive metrics to the risk factor revealed the highest cumulative degree of connectivity for the pericalcarine cortex, insula, banks of the superior sulcus, and the cerebellum. To enable scaling up our approach, we extended tensor network principal component analysis, introducing CCA components. We developed sparse regression predictive models with errors of 17% for genotype, 24% for family risk factor for AD, and 5 years for age. Age prediction in groups including cognitively impaired subjects revealed regions not found using only normal subjects, i.e. middle and transverse temporal, paracentral and superior banks of temporal sulcus, as well as the amygdala and parahippocampal gyrus. These modeling approaches represent stepping stones towards single subject prediction.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Encéfalo/patología , Genotipo , Envejecimiento
7.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168445

RESUMEN

Alzheimer's disease (AD) remains one of the most extensively researched neurodegenerative disorders due to its widespread prevalence and complex risk factors. Age is a crucial risk factor for AD, which can be estimated by the disparity between physiological age and estimated brain age. To model AD risk more effectively, integrating biological, genetic, and cognitive markers is essential. Here, we utilized mouse models expressing the major APOE human alleles and human nitric oxide synthase 2 to replicate genetic risk for AD and a humanized innate immune response. We estimated brain age employing a multivariate dataset that includes brain connectomes, APOE genotype, subject traits such as age and sex, and behavioral data. Our methodology used Feature Attention Graph Neural Networks (FAGNN) for integrating different data types. Behavioral data were processed with a 2D Convolutional Neural Network (CNN), subject traits with a 1D CNN, brain connectomes through a Graph Neural Network using quadrant attention module. The model yielded a mean absolute error for age prediction of 31.85 days, with a root mean squared error of 41.84 days, outperforming other, reduced models. In addition, FAGNN identified key brain connections involved in the aging process. The highest weights were assigned to the connections between cingulum and corpus callosum, striatum, hippocampus, thalamus, hypothalamus, cerebellum, and piriform cortex. Our study demonstrates the feasibility of predicting brain age in models of aging and genetic risk for AD. To verify the validity of our findings, we compared Fractional Anisotropy (FA) along the tracts of regions with the highest connectivity, the Return-to-Origin Probability (RTOP), Return-to-Plane Probability (RTPP), and Return-to-Axis Probability (RTAP), which showed significant differences between young, middle-aged, and old age groups. Younger mice exhibited higher FA, RTOP, RTAP, and RTPP compared to older groups in the selected connections, suggesting that degradation of white matter tracts plays a critical role in aging and for FAGNN's selections. Our analysis suggests a potential neuroprotective role of APOE2, relative to APOE3 and APOE4, where APOE2 appears to mitigate age-related changes. Our findings highlighted a complex interplay of genetics and brain aging in the context of AD risk modeling.

9.
Front Neurosci ; 16: 848654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784847

RESUMEN

Spatial navigation and orientation are emerging as promising markers for altered cognition in prodromal Alzheimer's disease, and even in cognitively normal individuals at risk for Alzheimer's disease. The different APOE gene alleles confer various degrees of risk. The APOE2 allele is considered protective, APOE3 is seen as control, while APOE4 carriage is the major known genetic risk for Alzheimer's disease. We have used mouse models carrying the three humanized APOE alleles and tested them in a spatial memory task in the Morris water maze. We introduce a new metric, the absolute winding number, to characterize the spatial search strategy, through the shape of the swim path. We show that this metric is robust to noise, and works for small group samples. Moreover, the absolute winding number better differentiated APOE3 carriers, through their straighter swim paths relative to both APOE2 and APOE4 genotypes. Finally, this novel metric supported increased vulnerability in APOE4 females. We hypothesized differences in spatial memory and navigation strategies are linked to differences in brain networks, and showed that different genotypes have different reliance on the hippocampal and caudate putamen circuits, pointing to a role for white matter connections. Moreover, differences were most pronounced in females. This departure from a hippocampal centric to a brain network approach may open avenues for identifying regions linked to increased risk for Alzheimer's disease, before overt disease manifestation. Further exploration of novel biomarkers based on spatial navigation strategies may enlarge the windows of opportunity for interventions. The proposed framework will be significant in dissecting vulnerable circuits associated with cognitive changes in prodromal Alzheimer's disease.

10.
Neuroimage ; 242: 118470, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391877

RESUMEN

We describe a multi-contrast, multi-dimensional atlas of the Wistar rat acquired at microscopic spatial resolution using magnetic resonance histology (MRH). Diffusion weighted images, and associated scalar images were acquired of a single specimen with a fully sampled Fourier reconstruction, 61 angles and b=3000 s/mm2 yielding 50 um isotropic spatial resolution. The higher angular sampling allows use of the GQI algorithm improving the angular invariance of the scalar images and yielding an orientation distribution function to assist in delineating subtle boundaries where there are crossing fibers  and track density images providing insight into local fiber architecture.  A multigradient echo image of the same specimen was acquired at 25 um isotropic spatial resolution. A quantitative susceptibility map enhances fiber architecture relative to the magnitude images.  An accompanying multi-specimen atlas (n=6) was acquired with compressed sensing with the same diffusion protocol as used for the single specimen atlas.  An average was created using diffeomorphic mapping. Scalar volumes from the diffusion data, a T2* weighted volume, a quantitative susceptibility map, and a track density volume, all registered to the same space provide multiple contrasts to assist in anatomic delineation. The new template  provides significantly increased contrast in the scalar DTI images when compared to previous atlases. A compact interactive viewer based on 3D Slicer is provided to facilitate comparison among the contrasts in the multiple volumes. The single volume and average atlas with multiple 3D volumes provide an improved template for anatomic interrogation of the Wistar rat brain. The improved contrast to noise in the scalar DTI images and the addition of other volumes (eg. QA,QSM,TDI ) will facilitate automated label registration for MR histology and preclinical imaging.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión Tensora/métodos , Ratas Wistar/anatomía & histología , Animales , Atlas como Asunto , Mapeo Encefálico/métodos , Imagen de Difusión por Resonancia Magnética , Masculino , Ratas
11.
BMJ Open ; 11(8): e053019, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400461

RESUMEN

INTRODUCTION: Diabetic kidney disease (DKD) is the most frequent cause of end-stage renal disease (ESRD) in the USA and worldwide. Recent experimental and clinical data suggest that the non-specific phosphodiesterase inhibitor pentoxifylline (PTX) may decrease progression of chronic kidney disease. However, a large-scale randomised clinical trial is needed to determine whether PTX can reduce ESRD and death in DKD. METHODS AND ANALYSIS: Veterans Affairs (VA) PTXRx is a pragmatic, randomised, placebo-controlled multicentre VA Cooperative Study to test the hypothesis that PTX, when added to usual care, leads to a reduction in the time to ESRD or death in patients with type 2 diabetes with DKD when compared with usual care plus placebo. The study aims to enrol 2510 patients over a 4-year period with an additional up to 5-year follow-up to generate a total of 646 primary events. The primary objective of this study is to compare the time until ESRD or death (all-cause mortality) between participants randomised to PTX or placebo. Secondary endpoints will be: (1) health-related quality of life, (2) time to doubling of serum creatinine, (3) incidence of hospitalisations for congestive heart failure, (4) incidence of a three-point major adverse cardiovascular events composite (cardiovascular death, non-fatal myocardial infarction, non-fatal stroke), (5) incidence of peripheral vascular disease, (6) change in urinary albumin-to-creatinine ratio from baseline to 6 months and (7) rate of annual change in estimated glomerular filtration rate (eGFR) during the study period. ETHICS AND DISSEMINATION: This study was approved by the VA Central Institutional Review Board (cIRB/18-36) and will be conducted in compliance with the Declaration of Helsinki and the Guidelines for Good Clinical Practice. The Hines Cooperative Studies Programme will finalise the study results, which will be published in accordance with the Consolidated Standards of Reporting Trials statement in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: NCT03625648.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Pentoxifilina , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Tasa de Filtración Glomerular , Humanos , Estudios Multicéntricos como Asunto , Pentoxifilina/uso terapéutico , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
Magn Reson Imaging ; 76: 26-38, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33010377

RESUMEN

G Protein-Coupled Receptor Kinase-Interacting Protein-1 (GIT1) regulates neuronal functions, including cell and axon migration and synapse formation and maintenance, and GIT1 knockout (KO) mice exhibit learning and memory deficits. We noted that male and female GIT1-KO mice exhibit neuroimaging phenotypes including microcephaly, and altered cortical layering, with a decrease in neuron density in cortical layer V. Micro-CT and magnetic resonance microscopy (MRM) were used to identify morphometric phenotypes for the skulls and throughout the GIT1-KO brains. High field MRM of actively-stained mouse brains from GIT1-KO and wild type (WT) controls (n = 6 per group) allowed segmenting 37 regions, based on co-registration to the Waxholm Space atlas. Overall brain size in GIT1-KO mice was ~32% smaller compared to WT controls. After correcting for brain size, several regions were significantly different in GIT1-KO mice relative to WT, including the gray matter of the ventral thalamic nuclei and the rest of the thalamus, the inferior colliculus, and pontine nuclei. GIT1-KO mice had reduced volume of white matter tracts, most notably in the anterior commissure (~26% smaller), but also in the cerebral peduncle, fornix, and spinal trigeminal tract. On the other hand, the basal ganglia appeared enlarged in GIT1-KO mice, including the globus pallidus, caudate putamen, and particularly the accumbens - supporting a possible vulnerability to addiction. Volume based morphometry based on high-resolution MRM (21.5 µm isotropic voxels) was effective in detecting overall, and local differences in brain volumes in GIT1-KO mice, including in white matter tracts. The reduced relative volume of specific brain regions suggests a critical, but not uniform, role for GIT1 in brain development, conducive to brain microcephaly, and aberrant connectivity.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Proteínas de Ciclo Celular/deficiencia , Proteínas Activadoras de GTPasa/deficiencia , Microcefalia/diagnóstico por imagen , Microcefalia/patología , Neuroimagen , Animales , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Técnicas de Inactivación de Genes , Masculino , Ratones , Microcefalia/genética , Neuronas/metabolismo , Neuronas/patología , Microtomografía por Rayos X
13.
Toxicol Pathol ; 48(8): 965-980, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33334257

RESUMEN

It is well established that hexachlorophene, which is used as an antibacterial agent, causes intramyelinic edema in humans and animal models. The hexachlorophene myelinopathy model, in which male Sprague-Dawley rats received 25 to 30 mg/kg hexachlorophene by gavage for up to 5 days, provided an opportunity to compare traditional neuropathology evaluations with magnetic resonance microscopy (MRM) findings. In addition, stereology assessments of 3 neuroanatomical sites were compared to quantitative measurements of similar structures by MRM. There were positive correlations between hematoxylin and eosin and luxol fast blue stains and MRM for identifying intramyelinic edema in the cingulum of corpus callosum, optic chiasm, anterior commissure (aca), lateral olfactory tracts, pyramidal tracts (py), and white matter tracts in the cerebellum. Stereology assessments were focused on the aca, longitudinal fasciculus of the pons, and py and demonstrated differences between control and treated rats, as was observed using MRM. The added value of MRM assessments was the ability to acquire qualitative 3-dimensional (3-D) images and obtain quantitative measurements of intramyelinic edema in 26 neuroanatomical sites in the intact brain. Also, diffusion tensor imaging (fractional anisotropy [FA]) indicated that there were changes in the cytoarchitecture of the white matter as detected by decreases in the FA in the treated compared to the control rats. This study demonstrates creative strategies that are possible using qualitative and quantitative assessments of potential white matter neurotoxicants in nonclinical toxicity studies. Our results lead us to the conclusion that volumetric analysis by MRM and stereology adds significant value to the standard 2-D microscopic evaluations.


Asunto(s)
Imagen de Difusión Tensora , Hexaclorofeno , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Microscopía , Ratas , Ratas Sprague-Dawley
14.
J Chem Phys ; 153(18): 184103, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187430

RESUMEN

An adaptation of the full configuration interaction quantum Monte Carlo (FCIQMC) method is presented for correlated electron problems containing heavy elements and the presence of significant relativistic effects. The modified algorithm allows for the sampling of the four-component spinors of the Dirac-Coulomb(-Breit) Hamiltonian within the relativistic no-pair approximation. The loss of spin symmetry and the general requirement for complex-valued Hamiltonian matrix elements are the most immediate considerations in expanding the scope of FCIQMC into the relativistic domain, and the alternatives for their efficient implementation are motivated and demonstrated. For the canonical correlated four-component chemical benchmark application of thallium hydride, we show that the necessary modifications do not particularly adversely affect the convergence of the systematic (initiator) error to the exact correlation energy for FCIQMC calculations, which is primarily dictated by the sparsity of the wavefunction, allowing the computational effort to somewhat bypass the formal increases in Hilbert space dimension for these problems. We apply the method to the larger problem of the spectroscopic constants of tin oxide, correlating 28 electrons in 122 Kramers-paired spinors, finding good agreement with experimental and prior theoretical relativistic studies.

15.
Neuroimage ; 222: 117274, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32818613

RESUMEN

Genome-wide association studies have demonstrated significant links between human brain structure and common DNA variants. Similar studies with rodents have been challenging because of smaller brain volumes. Using high field MRI (9.4 T) and compressed sensing, we have achieved microscopic resolution and sufficiently high throughput for rodent population studies. We generated whole brain structural MRI and diffusion connectomes for four diverse isogenic lines of mice (C57BL/6J, DBA/2J, CAST/EiJ, and BTBR) at spatial resolution 20,000 times higher than human connectomes. We measured narrow sense heritability (h2) I.e. the fraction of variance explained by strains in a simple ANOVA model for volumes and scalar diffusion metrics, and estimates of residual technical error for 166 regions in each hemisphere and connectivity between the regions. Volumes of discrete brain regions had the highest mean heritability (0.71 ± 0.23 SD, n = 332), followed by fractional anisotropy (0.54 ± 0.26), radial diffusivity (0.34 ± 0.022), and axial diffusivity (0.28 ± 0.19). Connection profiles were statistically different in 280 of 322 nodes across all four strains. Nearly 150 of the connection profiles were statistically different between the C57BL/6J, DBA/2J, and CAST/EiJ lines. Microscopic whole brain MRI/DTI has allowed us to identify significant heritable phenotypes in brain volume, scalar DTI metrics, and quantitative connectomes.


Asunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Encéfalo/fisiología , Imagen de Difusión Tensora , Animales , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética/métodos , Ratones
16.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32716189

RESUMEN

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

17.
J Chem Phys ; 152(5): 054101, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32035465

RESUMEN

Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems and was recently adapted for use as an active space solver and combined with orbital optimization. In this work, we detail an approach within FCIQMC to allow for efficient sampling of fully internally contracted multireference perturbation theories within the same stochastic framework. Schemes are described to allow for the close control over the resolution of stochastic sampling of the effective higher-body intermediates within the active space. It is found that while complete active space second-order perturbation theory seems less amenable to a stochastic reformulation, strongly contracted N-Electron Valence second-order Perturbation Theory (NEVPT2) is far more stable, requiring a similar number of walkers to converge the sc-NEVPT2 expectation values as to converge the underlying CI problem. We demonstrate the application of the stochastic approach to the computation of sc-NEVPT2 within a (24, 24) active space in a biologically relevant system and show that small numbers of walkers are sufficient for a faithful sampling of the sc-NEVPT2 energy to chemical accuracy, despite the active space already exceeding the limits of practicality for traditional approaches. This raises prospects of an efficient stochastic solver for multireference chemical problems requiring large active spaces, with an accurate treatment of external orbitals.

18.
Front Phys ; 82020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33928076

RESUMEN

Network approaches provide sensitive biomarkers for neurological conditions, such as Alzheimer's disease (AD). Mouse models can help advance our understanding of underlying pathologies, by dissecting vulnerable circuits. While the mouse brain contains less white matter compared to the human brain, axonal diameters compare relatively well (e.g., ~0.6 µm in the mouse and ~0.65-1.05 µm in the human corpus callosum). This makes the mouse an attractive test bed for novel diffusion models and imaging protocols. Remaining questions on the accuracy and uncertainty of connectomes have prompted us to evaluate diffusion imaging protocols with various spatial and angular resolutions. We have derived structural connectomes by extracting gradient subsets from a high-spatial, high-angular resolution diffusion acquisition (120 directions, 43-µm-size voxels). We have simulated protocols with 12, 15, 20, 30, 45, 60, 80, 100, and 120 angles and at 43, 86, or 172-µm voxel sizes. The rotational stability of these schemes increased with angular resolution. The minimum condition number was achieved for 120 directions, followed by 60 and 45 directions. The percentage of voxels containing one dyad was exceeded by those with two dyads after 45 directions, and for the highest spatial resolution protocols. For the 86- or 172-µm resolutions, these ratios converged toward 55% for one and 39% for two dyads, respectively, with <7% from voxels with three dyads. Tractography errors, estimated through dyad dispersion, decreased most with angular resolution. Spatial resolution effects became noticeable at 172 µm. Smaller tracts, e.g., the fornix, were affected more than larger ones, e.g., the fimbria. We observed an inflection point for 45 directions, and an asymptotic behavior after 60 directions, corresponding to similar projection density maps. Spatially downsampling to 86 µm, while maintaining the angular resolution, achieved a subgraph similarity of 96% relative to the reference. Using 60 directions with 86- or 172-µm voxels resulted in 94% similarity. Node similarity metrics indicated that major white matter tracts were more robust to downsampling relative to cortical regions. Our study provides guidelines for new protocols in mouse models of neurological conditions, so as to achieve similar connectomes, while increasing efficiency.

19.
PLoS One ; 14(5): e0216596, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31067263

RESUMEN

We do not have a full understanding of the mechanisms underlying plasticity in the human brain. Mouse models have well controlled environments and genetics, and provide tools to help dissect the mechanisms underlying the observed responses to therapies devised for humans recovering from injury of ischemic nature or trauma. We aimed to detect plasticity following learning of a unilateral reaching movement, and relied on MRI performed with a rapid structural protocol suitable for in vivo brain imaging, and a longer diffusion tensor imaging (DTI) protocol executed ex vivo. In vivo MRI detected contralateral volume increases in trained animals (reachers), in circuits involved in motor control, sensory processing, and importantly, learning and memory. The temporal association area, parafascicular and mediodorsal thalamic nuclei were also enlarged. In vivo MRI allowed us to detect longitudinal effects over the ~25 days training period. The interaction between time and group (trained versus not trained) supported a role for the contralateral, but also the ipsilateral hemisphere. While ex vivo imaging was affected by shrinkage due to the fixation, it allowed for superior resolution and improved contrast to noise ratios, especially for subcortical structures. We examined microstructural changes based on DTI, and identified increased fractional anisotropy and decreased apparent diffusion coefficient, predominantly in the cerebellum and its connections. Cortical thickness differences did not survive multiple corrections, but uncorrected statistics supported the contralateral effects seen with voxel based volumetric analysis, showing thickening in the somatosensory, motor and visual cortices. In vivo and ex vivo analyses identified plasticity in circuits relevant to selecting actions in a sensory-motor context, through exploitation of learned association and decision making. By mapping a connectivity atlas into our ex vivo template we revealed that changes due to skilled motor learning occurred in a network of 35 regions, including the primary and secondary motor (M1, M2) and sensory cortices (S1, S2), the caudate putamen (CPu), visual (V1) and temporal association cortex. The significant clusters intersected tractography based networks seeded in M1, M2, S1, V1 and CPu at levels > 80%. We found that 89% of the significant cluster belonged to a network seeded in the contralateral M1, and 85% to one seeded in the contralateral M2. Moreover, 40% of the M1 and S1 cluster by network intersections were in the top 80th percentile of the tract densities for their respective networks. Our investigation may be relevant to studies of rehabilitation and recovery, and points to widespread network changes that accompany motor learning that may have potential applications to designing recovery strategies following brain injury.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Aprendizaje/fisiología , Imagen por Resonancia Magnética/métodos , Destreza Motora/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Brain Struct Funct ; 224(5): 1797-1813, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31006072

RESUMEN

Advanced biophysical models like neurite orientation dispersion and density imaging (NODDI) have been developed to estimate the microstructural complexity of voxels enriched in dendrites and axons for both in vivo and ex vivo studies. NODDI metrics derived from high spatial and angular resolution diffusion MRI using the fixed mouse brain as a reference template have not yet been reported due in part to the extremely long scan time required. In this study, we modified the three-dimensional diffusion-weighted spin-echo pulse sequence for multi-shell and undersampling acquisition to reduce the scan time. This allowed us to acquire several exhaustive datasets that would otherwise not be attainable. NODDI metrics were derived from a complex 8-shell diffusion (1000-8000 s/mm2) dataset with 384 diffusion gradient-encoding directions at 50 µm isotropic resolution. These provided a foundation for exploration of tradeoffs among acquisition parameters. A three-shell acquisition strategy covering low, medium, and high b values with at least angular resolution of 64 is essential for ex vivo NODDI experiments. The good agreement between neurite density index (NDI) and the orientation dispersion index (ODI) with the subsequent histochemical analysis of myelin and neuronal density highlights that NODDI could provide new insight into the microstructure of the brain. Furthermore, we found that NDI is sensitive to microstructural variations in the corpus callosum using a well-established demyelination cuprizone model. The study lays the ground work for developing protocols for routine use of high-resolution NODDI method in characterizing brain microstructure in mouse models.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Dendritas/patología , Procesamiento de Imagen Asistido por Computador , Neuritas/patología , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Dendritas/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Ratones Endogámicos C57BL , Neuritas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...